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Abstract: The results of random-phase approximation calculations, which yield oscillator and rotatory strengths for electronic 
transitions correctly to first order in electron correlation, are reformulated in terms of localized molecular orbitals to allow in­
terpretation of chromophoric excitations in terms of the interaction between a chromophore and its surroundings. Minimal 
basis set RPA calculations on a chiral conformation of diethyl ketone are presented in the localized picture, and the origins of 
the electric dipole transition moment of the n —• TT* transition are discussed. The calculated energy and rotatory strength for 
this excitation are in excellent agreement with experiment. Problems concerning the assignment of higher lying bands are dis­
cussed. The origin-independent part of the dipole length form of the rotatory strength is derived in an appendix. 

I. Introduction 
The rotatory intensity of the n—*x* transition in chiral, 

saturated ketones has been the object of a great deal of theo­
retical and experimental attention over the years.4 Both the 
sign and the magnitude of the observed rotatory intensity in 
the 290-nm spectral region are very sensitive to the disposition 
of the extrachromophoric portion of the molecule with respect 
to the local symmetry planes of the carbonyl group, and to a 
third surface, not determined by symmetry, that intersects the 
other two. The experimental sign correlations are summarized 
in the ketone octant rule,5 which has proven to be a most 
valuable tool in determining the absolute configuration of a 
host of organic compounds. The magnitudes of the n-»7r* 
Cotton effect vary markedly with the position of a dissym­
metric substituent within a given sign-determining region; 
moreover, recent studies have shown that the sign-determining 
regions originally proposed admit a number of exceptions.6 

Although the signs of the rotatory strength can be predicted 
correctly from molecular orbital calculations for many con-
formationally rigid ketones, the calculated magnitudes are 
typically much too large, and thus the detailed structural in­
formation inherent in the experimental intensities is not 
mimicked by the calculations. Moreover, incorrect predictions 
of absolute configuration do occur. 

It is now well known that a balanced treatment of electron 
correlation in both ground and excited states is crucial to the 
accurate determination of electronic intensities.7 Correlation 
is typically introduced by expressing the pertinent states in 
terms of some sort of configuration interaction (CI) method.8 

Such procedures converge to reasonably good results—pro­
vided a good enough atomic orbital basis set—but the com­
putational effort quickly becomes great, and the rate of con­
vergence is slow. Since the CI method aims at optimizing the 
energies and wave functions of the individual states, much of 
the computational effort is misplaced as regards the spectro-
scopically observable energy differences and transition mo­
ments. 

A physically appealing and efficient method for determining 
these properties directly, taking proper account of correlation, 
is the so-called random phase approximation (RPA).9'10 

Various versions of the method have been applied successfully 
to a number of molecules and spectroscopic properties, notably 
by Shibuya, McKoy, and co-workers,11 and by JySrgensen, 
Oddershede, Linderberg, and co-workers.10,12 We have re­
cently applied the RPA method to the ab initio calculation of 

rotatory intensities of several simple optically active systems, 
with encouraging results for both signs and magnitudes.13'14 

The results of such a calculation are normally obtained in 
terms of the canonical, i.e., fully delocalized set of molecular 
orbitals that one obtains from an SCF calculation.15 Many 
molecules, however, are known from chemical and spectro­
scopic evidence to be describable in terms of a chromophore, 
which is responsible for the main features of the electronic 
absorption band of interest, and the remainder of the molecule 
which acts as a perturbation. Indeed, the ketone octant rule 
and all sector rules for optical activity assume that such a di­
vision is possible.16 In order to extract the interaction between 
a chromophore and its surroundings from the results of a cal­
culation, it is convenient to use a localized orbital basis,17 rather 
than the delocalized canonical orbitals. Such localized orbitals 
have been used many times in discussions of ground-state 
properties and chemical bonding;18 however, with the notable 
exception of the work by Langlet, Malrieu, and co-workers,19 

very little attention has been paid to the use of localized orbitals 
in discussions of spectroscopic properties. 

The purpose of this paper is twofold: first, to show how the 
results obtained in canonical RPA calculations can be refor­
mulated in terms of localized molecular orbitals, and second, 
to present the results of an ab initio RPA calculation of the 
low-lying valence shell excitations of a saturated ketone, where 
we use such a localized molecular orbital analysis to extract 
the chromophoric and the extrachromophoric contributions 
to the ordinary and rotatory intensities. The specific molecular 
system for these calculations is a chiral conformation of diethyl 
ketone, chosen to mimic the effects of 2-axial methyl groups 
in rigid, saturated ketones. 

Section II contains a summary of the necessary intensity 
relations, including a brief outline of the general RPA relations. 
The formalism for the localized orbital analysis is derived in 
section III, and the actual method used to localize the occupied 
and the virtual orbitals is given in section IV. Section V con­
tains the results of the calculations on the chiral conformation 
of diethyl ketone, and section VI contains discussion and 
concluding remarks. 

II. Theoretical Intensity Considerations 
The ordinary and rotatory intensities of an electronic tran­

sition from the ground state ^n to an excited state ^ q are given 
by the oscillator strength/oq and the rotatory strength Roq, 
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for which the following equivalent expressions are avail­
able:20"22 

/oqW = (2m/3ft2)A£0q|<0|£r«|q>l2(lengthform) ( 1 ) 
i 

/oq(rV) = (%) <0|E r,|q) • <0 | E V,|q) (mixed form) (2) 
i i 

/ 0 q
( v ) = (2h2/3mAE0q)\(0 | E V,|q> |2(velocity form) (3) 

Roq
{r) = (e2ft/2mc) (01Zr1-Iq) • (0 |£r,- X V,-|q) 

(length form) (4) 

Ro*™ = (e2V/2m2cAE0q) (0 |£V, |q) • (0 | £ r,- X V,|q) 
i i 

(velocity form) (5) 

in cgs units. Here AEQ01 is the transition energy for the exci­
tation 0 -* q, r,- and $,• are respectively the position vector and 
gradient operator for the ;th electron, and (0 |^ |q) = 
JVo*A\paL dr. The equivalence among the expressions in eq 1-3 
and 4,5, respectively, follows from the relation 

— (0|£V, |q> = <0|[£r,vff]|q) = A£oq(0 |£r , |q> (6) 
m < i i 

which is a special case of the off-diagonal hypervirial rela­
tion23 

<0|[F,#]|q) = AfOq(O^Iq) (7) 

for an arbitrary operator F. In general, eq 1-3 and 4,5 will yield 
unequal results when approximate wave functions and energies 
are used; moreover, the length form of the rotatory strength 
i?oq(r) may be dependent on the choice of coordinate origin if 
the vectors (0|S,r,|q> and (0|2,V,|q) are not parallel.22 In 
such cases, however, the quantity 

RQq
[r] = ( / 0 q ( r V ) / / 0 q ( V ) ) * < .(V) (8) 

(see Appendix) is origin independent, and is the part of R^r> 

that is determined by the quality of the wave functions. 
The degree of agreement among eq 1 -3 and 4,5 may be used 

as an index of the degree to which the excitations are properly 
described in the calculation. The RPA method, which is em­
ployed in this paper, has the appealing features that it deals 
directly with excitation quantities such as transition energies 
and transition moments, and that, in the limit of a complete 
Hartree-Fock basis set, the off-diagonal hypervirial relation, 
eq 7, is fulfilled for an arbitrary one-electron operator, so that 
the equivalent expressions in fact yield identical results. On 
the other hand, the conventional, variationally optimized CI 
description of the individual states is not in general balanced 
sufficiently well to yield transition moments which fulfill eq 
6 and 7. 

The RPA method is usually derived either from so-called 
equations of motion or from polarization propagators, in both 
cases via a second-quantized formalism. We have shown 
elsewhere that the RPA equations can be derived within a CI 
formulation provided that we require that the transition mo­
ments fulfill eq 7.24 For convenience we present a brief outline 
of the latter approach below. 

Let the states ^o and ^ q be represented by the approximate 
forms 

Vo = D0]A0) + V4 £ £ DVmUI'm') 
(Im) (I'm') 

*q = E CV»)|*—«> 
(Im) 

m 
m 

(9) 

(10) 

where | Ao) is the exact Hartree-Fock single Slater determi­
nant |0i02"*0/"'0/'""$iv| of molecular spin orbitals 4>h 
\l -» m) is a singly excited configuration ||<pi</>2"-</>m""0/ 
'•"<J>N\> and Do, £>(/«),Cm'), and Cq(/m) are numerical coeffi­
cients labeled by the paired indexes in parentheses (Im), (Fm'). 
Here I and /' refer to orbitals occupied in the Hartree-Fock 
ground state (with "less" energy than the bonding level), and 
m and m' refer to unoccupied (virtual) orbitals (with "more" 
energy than the occupied ones). The form of eq 9 follows from 
the Brillouin relation,25

 (AQ\H\1 —>m) =0, and thus the most 
important correlation corrections to | Ao) are from the doubly 
excited configurations 

m 
m 

The transition moment (0|F|q) induced by a one-electron 
operator F = S ^ is then given by 

(0\F\q)=D0* E C\lm) (AQ\F\l-^ m) 
dm) 

+ E E £*(/m),(/W) 
(Im) (I'm') 

XC'(,W)f."> W V l AoI (H) 

(0|F|q) = E \fimX\lm)+fm,Y\lm)) (12) 
dm) 

where we have let Xqjm)
 = A)*Cq(/m) and Yqjm) = 

S(/'m')Z)*(/m),(/'„,')Cq(/'m'), and we have used the Slater-
Condon rules26 to reduce the matrix elements of F between 
Slater determinants to their one-electron equivalents fy = 
J"</>/*(l)/O)0;(l)dTi. Note that the correlation coefficients 
D(im).(I'm') occur in the transition moment expression only in 
fixed combinations with the Cq(/m), so that the number of 
coefficients to be determined in order to compute the intensities 
is much smaller than that required to describe the separate 
states. 

The requirement that the hypervirial relation, eq 7, be 
obeyed, that is, that the alternative intensity expressions yield 
the same result, together with Brillouin's relation, leads to the 
following equations for the coefficients Xq(imy. 

E \A(lm).(!'m')Xq(i'm>) 
(Im) 

+ B(im)ji>m>)Yq(i>m>)\ - AEQqX*ijm) ( 1 3 ) 

E \B*(lm),(rm')Xq(!>m') 
(Im) 

+ A* ^Fqr (Im)Jl1In')1 ^(Vm') = -AE ^n OqJ^(Im) (14) 

whereAjm)ji'm')= {l—>-m\H\l'—*-m') is the matrix element 
of the Hamiltonian between singly excited configurations, 
and 

B (Im)JVm') 
V -* m 
I —*• m 

H\A0 

is the matrix element connecting ground and doubly excited 
configurations. In matrix form 

B \ /Xq\ 
-A*) \YqJ AE Oq (15) 

This non-Hermitian eigenvalue problem can be solved by 
standard matrix diagonalization procedures, involving for real 
orbitals the diagonalization of A ± B,10 and the calculation 
involves manipulation of matrices no larger than N X N, where 
A' is the number of singly-excited configurations, whereas an 
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equivalent CI procedure would involve matrices of size ca. TV2 

X N2. It is important to note that the coefficients X^gm) and 
Y^(jm) are not the same as those that would have been obtained 
from a variational solution of eq 9 and 10. What the RPA 
method does is to sacrifice some of the energy optimization of 
the individual states in order to achieve a more balanced de­
scription of the excitation process, and the implied wave 
functions of eq 9 and 10 really only have heuristic value. The 
operators we shall deal with in computing the intensities are 
either Hermitian or anti-Hermitian. For a real basis set, eq 12 
specializes to 

(0|F|q) = E fim\X\,m) ± Y*Um)) (16) 
(Im) 

where the upper sign holds iff" is Hermitian, such as 2,-r,-, 
while the lower sign obtains iff" is anti-Hermitian, such as 2,-v* 
and 2,r,- X V,-. 

It should be emphasized at this point that the fact that the 
molecular orbitals are solutions to the Hartree-Fock equations 
is important for the RPA method in the sense that Brillouin's 
relation {A0 |# | / -*• m > = 0 is crucial for the construction of 
the expressions in eq 11. However, the orbitals need not be the 
canonical solutions, i.e., the orbital set which diagonalizes the 
Fock matrix. Any unitary transformation within the occupied 
set \<j>i\ and/or within the virtual set \4>m j will leave the Brillouin 
relation unaffected, so that the RPA expressions can be for­
mulated in terms of noncanonical orbitals. In the present 
context the particular noncanonical orbitals we have in mind 
are localized ones, and in the following section we shall present 
the formalism for the transformation of eq 12 and 13-15 into 
configurations corresponding to such localized orbitals. 

III. Localized Orbital Analysis of the RPA Solutions 

Let \4>u\ be the set of occupied canonical molecular spin 
orbitals, where / = a or j3 spin, \<pmi} the set of canonical virtual 
orbitals, \4>\j\ the set of noncanonical (here, localized) occupied 
orbitals, and {$„,•} the set of localized virtual orbitals. We shall 
discuss the method for obtaining {<f>\j\ and \4>^\ in the next 
section. Greek indexes are used throughout to refer to the lo­
calized orbitals. The canonical and the localized sets are related 
through unitary transformations: 

<t>xi = H4>iiT,x d>*xi=EThi<l>*tt 07) 
/ / 

0A» = H^miSmn 4>*»i = E S\m<j>*mi (18) 
m m 

where, for any unitary matrix W, "LjW^jWjk = 2yW//wt
/* = 5,*, 

and w^jj = w*j,; 
An integral of a one-electron operator/over the localized 

orbitals can be written 

/ V = <A|/U> = E Z T\,(l\f\m) S1n, (19) 
/ m 

with the inverse 

fim = d\f\m) = L £ T1x (X|/ |M) S\m (20) 
A n 

so that the RPA transition moment, eq 12, becomes 

<0|F|q> = E { M £ r / x S V ^ i ( , m ) ] 
Kf* mi 

+ U[Z.ThiSm»Y\lm)}} (21) 
ml 

It is convenient to introduce a unitary matrix V with ele­
ments 

V(lm),(\y.) = Tf \/Smil = T*ixSm/i (22) 

This matrix represents the transformation from the canonical 
(i.e., delocalized) configuration set labeled by the pair index 
(Im) into the noncanonical (i.e., localized) configuration set 
labeled by the pair index (X/n). In terms of the matrix V we 
observe that eq 19 and 21 provide the following transformation 
relations: 

Au = HfImV(Im)^X1I) (23) 
(Im) 

/uA = E fmlV*\lm),(\u) ( 2 4 ) 
(Im) 

Xq(AM) = E X1am)V*(lm),(\») ( 2 5 ) 
(Im) 

yq(\n) = L Yq(lm)V(lm),(\K-) ( 2 6 ) 
(Im) 

To see how the A and B matrices transform into their lo­
calized counterparts, we write out the expressions for the 
matrix elements for spin-singlet excitations in terms of the 
canonical MOs:9 

A(lm),(l'm') = &ll'l>mm'(*m ~ el) 

+ 2(ml\l'm')-{mm'\l'l) (27) 

B(,m),(i'm') = 2{lm\m'l') - (ml'\m'l) (28) 

where e„, and e/ are the Hartree-Fock orbital energies, and the 
integral (ij\kl) is defined as 

W\kl) = J j V ( D ^ O ) j-.4>k*(.2)4>i(2) dr, dr2 (29) 

The integral (ml\l'm'), for example, transforms in the fol­
lowing way: 

G^lXV) = E E S\mT,xT\rSm'„'(ml\l'm') 
Im Vm' 

= H H V*(,m),M(ml\l'm')VirmrhW) (30) 
(Im) (I'm') 

The remaining quantities appearing in A(im)t(i'm>) can be seen 
to transform in the same way, so that 

^ ( A M ) 1 ( A V ) ~ H H V*(lm),(\v.)A(lm),(l'm') 
(Im) (I'm') 

X V(l'm'),(\'p<') ( 3 1 ) 

For the B matrix, we consider the integral {ml\m'l')\ 

OtXkX') = E E S\mTlxS\*m>Tvx\ml\m'r) 
Im Vm' 

= H H K* ( /m), (V)(m/|m7')K* ( /WMXV) (32) 
(Im) (I'm') 

so that we finally obtain 

S(A,u) , (W) = E E y*(lm),(\n)B(lm).(l'm') 
(Im) (I'm') 

X K * ( r m ' ) , ( A V ) ( 3 3 ) 

in the localized basis. 
The transformed RPA equations are then 

(4. -SJKH-(S) <M) 

where the transformed quantities are defined in eq 25, 26, 31, 
and 33. The canonical RPA problem is symmetry adapted, that 
is, the A and B matrices are block diagonal, with matrices A(r), 
B ( r ) connecting singly excited configurations belonging to ir­
reducible representation T of the molecular point group. The 
V matrix is therefore also symmetry blocked into rectangular 
blocks W ) . Equations 23-26 are seen to reduce further, for 
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an excited state of symmetry T, 

fx, = Z E fm,mV(r\lm),M (35) 
r (Im)tT 

X q ( r W)= E ^ ( r )(/m)K*< r> ( / m W M (36) 

with similar equations for/Mx and y^^y The transforma­
tions of A and B are somewhat simplified, and reduce to a sum 
over symmetries: 

A = Y. Vt<r>A(r)v<r) (37) 
r 

$ = £ v«r)B(r)v*(r> (38) 
r 

IV. Determination of Localized Orbitals 
Equations 17 and 18, relating canonical and noncanonical 

molecular orbital sets by unitary transformations, are a con­
sequence of the invariance of a Slater determinantal wave 
function to such a transformation.27 Various criteria have been 
advanced for determining the transformation of the occupied 
orbital set to localized orbitals, the most common of which are 
the Edmiston-Ruedenberg method18 and the Foster-Boys 
method.17 

The Edmiston-Ruedenberg procedure requires an expensive 
transformation of electron repulsion integrals, and has thus 
remained largely unexploited for medium-sized or large mol­
ecules. The localized orbitals yielded by the two methods are 
actually quite similar,18 except that the Foster-Boys method 
produces "banana" bonds instead of the more conventional <r-7r 
orbitals for multiple bonds (see below). In the absence of 
compelling evidence favoring one procedure over the other on 
some absolute scale, we have opted for the Foster-Boys method 
on the basis of its computational simplicity. 

The Foster-Boys criterion for the unitary matrix T is that 
the quantity I,\(<t>\<t>\\r \22\4>\(l>\), which they refer to as "the 
quadratic self-repulsion", be minimized. This has been shown17 

to be equivalent to minimizing the sum 

J = Y,(4>x\ | r - R x | 2 | 0 x > = t f - E / ? x 2 

X A 

= 6 - ( 2 J V x ) - ' £ Z IRA-RA*I 2 (39) 
A A ' 

Here RA= (0x|r|</>x), and TVA denotes the number of orbitals 
in the set {4>\}. The values of a and b are unchanged by a unitary 
transformation of the orbitals. 

It is seen from the first expression in (39) that / may be 
taken as a measure of the average diffuseness of the orbitals. 
Thus the minimization of / produces the most compact orbitals 
(with this particular definition of the concept) that can be 
reached within a unitary transformation. 

Very little attention has been paid in previous work to the 
localization of the virtual orbital set. The added complication 
encountered in this case is that density of the orbitals is not the 
only condition that must be met. In order to have intensity 
contributions concentrated into a few configurations it is fur­
ther necessary that each of the localized virtual orbitals has 
large differential overlap with only one (or a few) of the lo­
calized occupied orbitals, i.e., that each of the virtual orbitals 
be localized in the same region as one (or a few) of the occupied 
orbitals. The same criterion also ensures that electron corre­
lation effects are most efficiently accounted for. Since both of 
these aspects are of interest in the present work, localizing the 
virtual orbitals in the same fashion as the occupied ones would 
not necessarily be optimal. Instead we adopt the extension of 
the Foster-Boys scheme that has been proposed by Coffey.28 

In this method the unitary transformation S of the virtual or­
bitals is required to minimize the sum 

K= i | R M - P , l 2 = t K<M|r-pM |2 |4v> 

-<*„ | | r -R M | 2 | 0„>} (40) 

where n is the number of virtual orbitals to be localized (n < 
Nf1), and the pM vectors point to the centroid positions of the 
relevant localized occupied orbitals. 

Let us for the moment assume that n = N11 and that we have 
started out by localizing the virtual orbitals by the same cri­
terion as used for the occupied ones, i.e., minimization of eq 
39 with the set {4>J substituted for \4>\}. Focusing next on K as 
given by the second expression in (40) it is seen that the last 
summation will vary slowly if the S matrix required to mini­
mize K is reasonably close to the one that minimizes / , i.e., if 
the pM's do not differ too much from the R/s obtained from the 
minimization of J. The Coffey procedure thus constitutes a 
desirable compromise: a presumably minor part of the density 
of the virtual orbitals is sacrificed in order to shift the centroid 
closer to those of the selected occupied orbitals. 

Our computer program for localizing the virtual orbitals 
proceeds through the two steps outlined above, namely, an 
initial localization using the Foster-Boys criterion, followed 
by a retransformation to accomplish the pairing with the oc­
cupied orbitals. Our experience so far has confirmed that the 
second step causes only small readjustments of the orbitals 
obtained in the initial step (0 values less than 0.05 rad). 
Lone-pair centroids, which have no virtual counterparts in 
minimal basis set calculations, of course do not enter the 
pairing process. 

The localization of orbitals proceeds by successive 2 * 2 
unitary transformations of the type 

0'„i = 0„i cos 8 — 4>„2 sin 0 

0'c2 = 0KI sin 0 + 0„2 cos 0 

The condition that / be stationary as a function of 0 leads to 
the equation17 

tan 46 = A-B / F ^ 2 - 5 2 (41) 

where A = R î - R„2andB= <0„iKl0i-2>- If f 1 ^ «ando2 < 
n the condition of immobility of K reads 

- A2 - B2\ sin Ad + (A • B) cos 46» 

+ ^ A sin 2d + B cos 20 • (p„2 - pA) = 0 (42) 

This is essentially the equation given by Coffey28 (however, 
there appears to be a misprint in ref 28 where the above 
equation shows an extra factor 1/2 on the cos 26 term). For the 
case v\ < n and v2 > n we obtain the equation 

V-A2 -B2 sin 4$ + (A -B) cos 48 

+ ^ A sin 28 + B cos 20 • (R„, + R„2 - 2pA) = 0 (43) 

Both eq 41 and 42 are easily solved by numerical methods and 
the solution corresponding to the minimum is found by in­
spection. 

The minimization of J converges rapidly, and is continued 
until J becomes stationary to within 10~14. The process re­
quires only a few seconds of computer time, and the dipole 
length matrix elements over atomic orbitals are already 
available for the intensity calculations. The localized functions 
so obtained correspond closely to chemical intuition in the case 
of the a bonds in the saturated parts of the molecules. On the 
other hand, for double bonds the Foster-Boys procedure yields 
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Table I. Atomic Coordinates (A) for Diethyl Ketone" 

atom 

O 
C 
Cn 
Hat 

" a a 
Q 
H/3ax 
H#3 
H/Jeq 

index 

1 
2 
3(10) 
4(11) 
5(12) 
6(13) 
7(14) 
8(15) 
9(16) 

X 

0.0 
0.0 
0.0 
0.0 
0.889 

-1.258 
-2.148 
-1.258 
-1.258 

Y 

0.0 
0.0 

-1.258 
-2.148 
-1.258 
-1.258 
-1.258 
-0.369 
-2.148 

Z 

1.220 
0.0 

-0.889 
-0.260 
-1.518 
-1.778 
-1.149 
-2.407 
-2.407 

a Only one of the two ethyl groups is given; coordinates for the other 
are obtained by changing the signs of X and Y. Atom numbers in 
parentheses refer to the symmetry-related atoms not given explicit­
ly-

a pair of banana orbitals, and the lone-pair orbitals come out 
essentially as sp2 hybrids. The latter results can be expected 
from the structure of the last term in eq 39, and are in fact 
well-known features of the Foster-Boys procedure. However, 
for the analysis of the results it is much more convenient to use 
localized orbitals that reflect as closely as possible the local 
symmetry of a chromophore (e.g., the Ci0 local symmetry of 
the carbonyl group). Such (pseudo)symmetry-adapted orbitals 
can be generated by a procedure which we call redelocaliza-
tion, in which the set of localized orbitals to be (pseudo)sym-
metry adapted is subjected to a new unitary transformation 
where the criterion is that / of eq 39 be maximized for this set 
of orbitals. In the diethyl ketone calculations reported in the 
next section, we use this procedure to generate the customary 
local c, rr, and nonbonding orbitals for the carbonyl frag­
ment. 

V. Diethyl Ketone. Computations and Results 
In order to apply the present method to chiral systems, we 

nave chosen to examine the low-lying valence-shell spectrum 
of a chiral conformation of diethyl ketone, in which the methyl 
groups are held in positions corresponding to 2-axial methyl 
groups in cyclohexanone. The conformation is such that a 
twofold rotational symmetry axis is maintained about the 
carbonyl group, in order to allow some symmetry blocking in 
the calculations. 

The positions of the carbon and hydrogen atoms were taken 
to correspond to those in a rigid, idealized chair-cyclohexane 
geometry; that is, all CCC, HCC, and HCH angles are tetra-
hedral, all rcc = 1-54 A, all rCH = 1.09 A, and rco = 1.22 A. 
These coordinates are not greatly different from those found 
in conformationally rigid ketones.5 The right-handed Cartesian 
coordinate system used has its origin on the carbonyl carbon, 
the oxygen along the +Z axis, and the two a carbons in the 
Y-Z plane. Atomic coordinates are given in Table I. 

The canonical molecular orbitals for the ground state were 
determined using the GAUSSIAN 70 system of computer pro­
grams29 and the STO-4G minimal basis set of Pople et al.30 

The orbital exponents used for the Slater orbital mimics were 
fc(ls) = 5.67, fc(2s) = fc(2p) = 1.72, f0(ls) = 7.66, fo(2s) 
= fo(2p) = 2.25, and fH(ls) = 1.24. The basis set yielded a 
total Hartree-Fock ground-state energy of -268.5959 au. 

The set of 18 valence-shell occupied and 16 virtual MOs 
supports a total of 288 singly excited configurations, which can 
be divided into 144 of A symmetry and 144 of B symmetry in 
the Ci point group. All valence-shell configurations were in­
cluded in the calculations of excitation properties. Canonical 
RPA calculations were performed for singlet excitations of 
each symmetry, and for comparison, the 1A excitations were 
also computed in singly-excited CI, also known as the 
Tamm-Dancoff approximation (TDA), and in the simple 
virtual-orbital, or single-transition approximation (STA).9 The 

TDA corresponds to neglecting the Y\\m) coefficients entirely, 
and formally setting the B matrix equal to zero, i.e., using an 
uncorrected ground state. 

We summarize the excitation properties of the lowest three 
singlet excitations in Table II. The overall agreement among 
the calculated intensities is seen to be quite good in the RPA, 
considering the small basis set used. Deviations from exact 
equivalence in the RPA are a consequence of a truncated basis 
set, since the RPA method guarantees satisfaction of the hy-
pervirial relation only for exact Hartree-Fock orbitals.24 Table 
II also shows a comparison of the results for the 1A states in 
TDA and STA, as well as comparisons with experiment. One 
sees that the rotatory strength calculated for the lowest 
(n-»-ir*) state is much too high in STA, as is typical of such 
calculations, while the RPA, and in this case also the TDA, 
yields energies and intensities that are in very good agreement 
with experimental estimates.6 It is this agreement, particularly 
between the dipole length and dipole velocity forms of the in­
tensities, that leads us to place some confidence in our mini­
mal-basis RPA results. RPA calculations are known to suffer 
from certain instabilities in approximate calculations, and these 
instabilities are closely related to instabilities in the approxi­
mate Hartree-Fock ground state.43 In the present case, we 
conclude from the results that the ground state is sufficiently 
well described to warrant application of the RPA method to 
the lowest lying singlet excitations, and in particular the 
290-nm transition, which is generally agreed to be a valence-
shell excitation. 

The 1B (o—*7r*) state correlates well with the a-*ir* exci­
tation computed at 9.2 eV in formaldehyde by Yeager and 
McKoy,31 and found experimentally at 8.9 eV.32 The 1A 
(7r-*x*) band, which is autoionizing in formaldehyde but 
seems to appear at the limits of the vacuum UV in aliphatic 
ketones, is calculated to lie somewhat too high in energy,32 and 
the TDA oscillator strengths disagree violently, while the RPA 
results are in reasonably good agreement. This feature of 
TDA-computed intensities has been observed frequently 
especially for ir-»-7r*-type excitations.13'14 

The molecular orbitals were localized according to the 
modified Foster-Boys-Coffey procedure outlined in the pre­
vious section; the carbonyl a, T, and nonbonding orbitals were 
generated by separate redelocalizations of the two CO double 
bond banana orbitals and the two sp2-type lone pair hybrids. 
The convergence for the localization of virtual orbitals turned 
out to be slow. In our calculations all the virtual orbitals were 
localized (i.e., n = N^1 in eq 39), and K was minimized to within 
1O-12; the process required some 30 s of IBM 370/155 com­
puter time. Special techniques were invoked in order to avoid 
breaking the overall molecular symmetry since this proved to 
be restored only at a rather slow rate. The centroids of the 
occupied a and IT orbitals of the CO group were close together, 
and it was decided to localize the corresponding virtual orbitals 
with respect to the midpoint between these two centroids. This 
resulted immediately in virtual orbitals of a* and 7r* character, 
and subsequent redelocalization, in the sense defined above, 
had essentially no effect on these orbitals. 

The centroids for the resulting localized orbitals are given 
in Table III. Because of the close relationship between the local 
symmetry of the chromophore and the overall molecular 
symmetry for the conformation of diethyl ketone we have 
chosen, it proved to be convenient to symmetry adapt the lo­
calized orbitals with respect to the molecular twofold rotation 
axis. This amounts simply to taking the combinations 2_1/2(<^i 
+ (J)2) for A symmetry and 2~'/2(0i - (J)2) for B symmetry, 
where ^1 and 4>2 are localized orbitals related by the Ci oper­
ation. The analysis of contributions to the overall transition 
moments by individual configurations built from this final set 
of localized orbitals is simplified, in that canceling contribu­
tions from opposite sides of the molecule are excluded auto-
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Table II. Calculated Spectroscopic Properties for the Lowest Three Singlet Excitations for Diethyl Ketone^ 

state 
1A (n—*•*) 

1B(IT-TT*) 

1 A (*—TT*) 

method 

STA 
TDA 
RPA 
expt' 
RPA 
exptrf 

STA 
TDA 
RPA 
expf 

AE" 

5.36 
4.44 
4.34 
4.3 
9.05 
8.9 

13.95 
11.47 
10.77 

~8.1 

/"> 

0.0013 
0.0001 
0.0001 

0.0017 

1.208 
0.395 
0.289 

firV) 

0.0015 
0.0001 
0.0001 

~10~4 

0.0063 

0.488 
-0.0008 

0.143 

/ (V) 

0.0018 
0.0001 
0.0001 

0.0275 

0.197 
1.6 X 10-6 

0.071 

R'rlb 

+30.5 
+7.7 
+8.3 

-2.7 

+ 11.7 
+26.1 
+ 14.7 

/J(V) b 

+35.7 
+7.9 
+6.4 
+9 ± 2 

-11.6 

+4.7 
-0.05 
+7.3 

/3oq, deg 

0 
0 
0 

20.9 

0 
0 
0 

0 Energies in eV; experimental energies are vertical transition energies. b Units of/? are D0/1OO = 1.08 X 1040# (cgs). c Reference 6. 
d Estimated value in formaldehyde, ref 32. e Estimated for diethyl ketone, ref 38. /See text and Appendix for definitions of symbols and 
notation. 

Table III. Modified Foster-Boys Localized Occupied MOs and Foster-Boys-Coffey Localized Virtual Orbitals" 

centroid coordinates, A 
index atom(s) x y Z 

1 
2 
4(3) 
6(5) 
7(8) 
9(10) 

12(11) 
13(14) 
15(16) 
17 
18 
19 
20 
22(21) 
24(23) 
25 (26) 
27 (28) 
30 (29) 
31 (32) 
33 (34) 

1-2 Or) 
1-2 Or) 
2-3(2-10) 
3-4(10-11) 
3-5(10-12) 
3-6(10-13) 
6-7(13-14) 
6-8(13-15) 
6-9(13-16) 

1-2 (<7*) 
1-2 (TT*) 
2-3(2-10) 
3-4(10-11) 
3-5(10-12) 
3-6(10-13) 
6-7(13-14) 
6-8(13-15) 
6-9(13-16) 

0 
0 
0.0025 

-0.0001 
0.6056 

-0.6252 
-1.8664 
-1.2587 
-1.2564 
0 
0 
0 
0 

-0.0006 
-0.0076 
0.5975 

-0.6297 
-1.8522 
-1.2534 
-1.2549 

0 
0 
0.6426 
1.8643 
1.2540 
1.2492 
1.2578 
0.6516 
1.8656 
0 
0 
0 
0 
0.6395 
1.8562 
1.2466 
1.2453 
1.2584 
0.6611 
1.8547 

0.7127 
0.6952 

-0.4405 
-0.4598 
-1.3111 
-1.3247 
-1.3484 
-2.2094 
-2.2058 

1.4990 
1.1615 
0.5706 
0.4641 

-0.4369 
-0.4592 
-1.3128 
-1.3275 
-1.3529 
-2.1986 
-2.1966 

" In each case the orbital index, atoms, and coordinates of the orbital centroid are given. Orbitals related by a Ci rotation to those given 
are indexed in parentheses. 

Table IV. Indexes, Symmetry Designations, and Descriptions of 
Symmetry-Adapted Localized Orbitals" 

description 

C - O Trx 

C = O a 
O lone pair (spz) 
O lone pair (py) 
C-Ca 

C(J-C^ 
C/3-H0ax 
Qr-H^ 
C/j-Hgeq 

occupied 

lb 
2a 
17a 
18b 
3a, 4b 
5b, 6a 
7b, 8a 
9a, 10b 
lib, 12a 
13a, 14b 
15b, 16a 

virtual 

20b 
19a 

21a, 22b 
23a, 24b 
25a, 26b 
27a, 28b 
29a, 30b 
31a, 32b 
33 b, 34a 

1 The symmetry label immediately follows the orbital index in each 

Table V. Analysis of the 1A (n—x*) Excitation Eigenvector 
(RPA) in Terms of the Symmetry-Adapted Localized Orbital Set 
of Table IV 

* \ . 
-0.889 74 
-0.414 39 

0.107 96 
-0.063 15 
-0.098 12 
-0.066 75 

0.059 35 
-0.053 69 

0.050 60 
0.038 91 
0.007 63 

K% 

0.053 83 
0.017 73 

-0.006 02 
0.002 84 
0.005 48 
0.002 76 

-0.002 63 
0.002 41 

-0.001 83 
-0.000 70 
-0.054 88 

excitation (X-

18—20 
4—20 

18—281 
10—20 
18—26 
7—20 
4—28 
4—26, 

15—20 
5—201 
1—22 I 

-M) % of total 

78.9 
17.1 

3.7 
0.3 

-0.1 
99.7 

matically. The centroids of the symmetry-adapted localized 
of course all lie along the z axis. The descriptions of these or­
bitals, together with their associated indexes and symmetry 
labels, are given in Table IV. 

From the transformation matrices for the localization, with 
additional modifications as described above, the transforma­
tion matrix V of eq 22 was constructed, and the canonical RPA 
coefficients X^ and Yi and the MO transition moment integrals 
f were transformed according to eq 23-26. 

The 1A (n—7T*) Excitation. In the localized orbital picture, 
this excitation is seen to consist predominantly of a combina­
tion of promotions from the 2pr"lone pair" orbital on oxygen 
and the antisymmetric combination of the carbonyl carbon-a 
carbon bonds into the w* orbital (Table V). Small contribu­
tions come from excitations into and out of the a-axial bonds 
and the /3-equatorial bond. The excitation is magnetic dipole 
allowed and the two main configurations in the excitation ei­
genvector account for 97% of the total magnetic transition 
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0.005 78 
-0.000 94 
-0.009 21 
-0.002 71 
-0.003 54 
-0.017 59 
-0.028 21 
-0.026 95 
-0.000 38 
-0.026 57 
-0.004 47 
-0.022 10 

0.003 07 
0.002 46 

-0 .003 10 
0.000 08 

-0.001 61 
-0.004 44 
-0.003 48 
-0 .002 84 

0.000 61 
-0 .003 45 

0.000 52 
-0 .003 97 

Table VI. Localized Analysis of the Electric Moment of the 1A 
(n-*ir*) Excitation" 

configuration 
description z V2 

LE in C = O (4 conf) 
C n -C ** C = O CT (6 conf) 
LE in C2H5 (14 conf) 
CQ bonds** C = O (18 conf) 
nearest-neighbor CT in C 2H 5 (48 conf) 
non-nearest-neighbor CT (54 conf) 

total 
zigzag orbitals only 

LE in zigzag 
CT in zigzag 

nearest neighbor CT 
non-nearest-neighbor CT 

" "LE" means locally excited configuration, and "CT" means 
charge transfer. See text for description of zigzag. 

moment (in the chosen coordinate system) of - 1 . 1 5 ^ . 
The electric dipole t ransi t ion moment , on the other hand, 

is zero in formaldehyde, and thus the observed optical activity 
of this transi t ion in chiral systems is governed by the dissym­
metry- induced electric moment . Tab le VI shows the break­
down of the electric moment into local and charge transfer 
contr ibutions. It is seen tha t the overall t ransi t ion moment is 
a result of a large number of small contributions of both kinds; 
however, a number of regulari t ies emerge from a closer anal­
ysis. 

In Table VII , which displays the contributions of each bond 
orbital to the electric moment , the largest noncanceling terms 
arise from the /3-equatorial local excitation and from long-
range charge transfer between this bond and the carbonyl 
group. The bonds involved in the large contr ibutions lie on a 
W-shaped path extending outward from the carbonyl group; 
this pa th is identical with what Kirk and Klyne have denoted 
a "p r imary z igzag" of bonds. 6 On empirical grounds, these 
authors have determined that substituents extending the zigzag 
path contribute much more to the total rotatory strength than 
those tha t break the pa t te rn , for example, in the /3-axial posi­

tion. Recent theoretical studies have shown a similar effect.4 '33 

The zigzag pathway, over which qui te long-range effects on 
the carbonyl group are observed, is reminiscent of the phe­
nomenon called W-coupling in N M R . 6 - 3 4 

Table VI shows that the contributions from the zigzag bonds 
are in fact sufficient to account for most of the induced electri 
t ransi t ion moment , but also tha t long-range couplings ar 
much more significant than would be expected from thei. 
contribution to the normalization of the excitation eigenvector. 
The zigzag behavior can be seen most clearly in the C - H bond 
contr ibutions of the terminal methyl groups. The (3-axial po­
sition actual ly interacts so as to reduce the net t ransi t ion mo­
ment ; experimentally, this corresponds to the "an t ioc t an t " 
behavior of a /3-axial subst i tuent . 3 5 

The importance of the zigzag path can be discerned already 
in the transition moment integrals over the localized molecular 
orbitals. Table VIII shows selected integrals involving the three 
methyl C - H orbitals. The difference in the long-range coupling 
shown by the three bonds is s tr iking, and in accord with 
available experimental evidence.6 T h e long-range coupling 
may be classed as "cha rge t ransfer" in the sense tha t contri­
butions from two-center te rms outside the main par t of the 
localized orbitals far outweigh the one- and two-center te rms 
linking the a tomic orbitals in the head of the orbital with the 
same atomic orbitals in the tail of the other. The contributions 
along the tails of the localized orbitals are significant, however, 
and may not be ignored. Tables VI and VII I show further that 
the contributions to the transi t ion moment from local mixing 
of carbonyl n and ir* orbitals is small at the M O level and ac­
tually of the opposite sign to the final moment at the R P A 
level.33 

Finally, it is of interest to note tha t , of the 144 1 A configu­
rations contr ibut ing to the electric transit ion moment , the 
contr ibutions from those arising from b—*b M O excitations 
far outweigh the terms from a -*a excitations. Of the total di­
pole length transit ion moment of —0.028 21 au, the b - * b ex­
citations account for —0.025 80 au. For the dipole velocity 
form, the proportion is - 0 . 0 0 2 94 out of - 0 . 0 0 3 48 au. An 
R P A calculation was carried out using only the 72 b ^ - b con­
figurations, and the results for the n—>-7r* excitation were AE 
= 4.34 eV, / ?M = + 7 . 3 , RW = + 5 . 1 . This result can be un-

Table VII. Analysis of 2- ' /2 x 104 <0|Vz|q> for the 1A (n—TT*) Excitation in Terms of Bond Orbital Contributions" 

C = O 
*" ^ a 
*~a~rleq 

^a~"ax 
Ca~Cf) 
CfJ-H eq 
C/3-Hax 

C^-H3 

22 
18 

65 
-64 
-21 

C=O 

- 5 

37 
-45 
- 6 

V w - V ^ n C 

-5 
4 

-H e q 

29 
4 

- 2 

^-«-r1ax 

-30 
-10 

2 
3 

Cn-Cf) 

-11 

- 2 
C/j-Heq Crt-Hn 

- 5 
CfJ-H3 

" Terms less than 1 in these units have been omitted for clarity. 

Table VIII. Selected Localized MO Integrals < \ | Z | M > ( < X | V Z | M > in Parentheses)" 

-eqH 
. /3-Methyl Group Interactions 

/3-axH £-H3 

t O TT* 

to C-C„ 
from a-eq H 

-0.152 72 (-0.031 41) 
-0.141 85 (-0.045 57) 
-0.018 41 (0.001 47) 

-0.008 65 (-0.012 82) 
-0.046 22 (-0.018 10) 
-0.049 55 (-0.019 82) 

(TT 

{py 
<CC« 

(PY 
<CC„ 

II. C = O Group Interactions 
Z(V2) 
Z(VZ) 
Z(V2) 
Z(Vz) 
Z(V2) 

TT*) 
TT*) 
TT*) 

CC„*> = 
CC„*> = 

1.146 64(0.213 66) 
-0 .005 25 (-0.002 67) 
-0.002 92 (-0.005 97) 

0.562 20(0.191 39) 
0.730 37 (0.339 70) 

-0.023 05 (-0.003 98) 
+0.006 52(0.036 51) 
-0.161 55 (-0.054 46) 

" Only the b-*b combinations are shown. 
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derstood with reference to the Civ local symmetry of the car­
bonyl chromophore, in which the n—>-7r* transition is of bi X 
b2 = A2 symmetry, corresponding to b X b = A in the C 2 
case. 

Higher Energy Valence Excitations. Because the adequacy 
of a minimal basis set can easily be questioned for higher lying 
transitions, we shall make only a few observations about 
them. 

The second excitation we compute is 1B, and consists in the 
localized orbital picture of a combination of promotions from 
spz(O), (JCO, and crcca (orbitals 17, 2, and 3) into TT* (orbital 
20). The magnetic moment is computed to be large and Y 
polarized, while the electric moment comes out mostly in the 
X direction. The question arises to what extent our 1B excita­
tion can be identified with the 190-nm band in saturated ke­
tones.36,39 The corresponding bands in formaldehyde and ac­
etone have been studied extensively,31'32-37 and the prevailing 
opinion at the present time is that the transition is Rydberg-
like, n—*3s. Barnes and Simpson,38 on the other hand, present 
spectra for both acetone and diethyl ketone in which the former 
clearly shows Rydberg peaks but the latter does not. Our cal­
culations do not support an earlier, valence-shell, n-^a* as­
signment for this band;40 the n-̂ -cr* transition we compute is 
the fourth 1B transition, occurring at 15.9 eV. However, since 
our basis set contains no diffuse functions, we are not in a po­
sition to address the Rydberg assignments. On the basis of the 
limited experimental and theoretical evidence for ketones 
larger than acetone, we believe that a definitive assignment of 
the 190-nm band for such molecules remains to be 
achieved.41 

The' A, 7r^-ir* excitation is found, as expected, to be dom­
inated by the local, carbonyl x-*x* transition, with a tail 
consisting of the antisymmetric combinations of the a-axial 
a bonds. The most important additional contribution to the 
electric transition moment comes from the local carbonyl 
0—«-cr* excitation, even though it contributes very little to the 
excitation eigenvector. Its effect is to reduce the transition 
moment generated by the TT—»TT* configuration by about 
one-third; TDA calculations of this type of excitation appear 
characteristically to overemphasize the a-*a* contribution, 
especially in the dipole velocity form, thus leading to anoma­
lously low intensities calculated for this transition.9-13 

VI. Concluding Remarks 

A random-phase approximation calculation of electronic 
intensities treats electron correlation correctly to first order, 
and the agreements among the various intensity expressions 
are limited only by the atomic orbital basis set used. The 
analysis of such a calculation in terms of localized orbitals, 
which we have introduced in the present work, allows inter­
pretation of the low-lying excitations in terms of a chromo­
phore interacting with its surroundings, and thus provides a 
firmer theoretical base for approximate models of optical ac­
tivity of inherently symmetric but dissymmetrically perturbed 
functional groups. 

The calculation could equally well have been done directly 
in a basis of localized orbitals. (Equation 37 no longer holds 
for the A matrix elements in this case, however.) With con­
figurations built from localized orbitals, correlation corrections 
to the local chromophoric excitations can be assumed to fall 
off with increasing distance from the chromophore. This 
property opens the possibility of truncation of the configura-
tional basis set by criteria closely related to the intensities of 
the excitations. The effects of less important configurations 
can be included by perturbation theory. Studies using this 
approach are underway, and will be reported in due course. 

Acknowledgment. This work was supported by research 
grants from the NATO Scientific Affairs Division and the 

Danish Natural Science Research Council, and by the Grad­
uate School of Southern Illinois University at Edwardsville. 
We thank Professor Carl Trindle for a helpful discussion. 

Appendix. Origin-Independent Part of i?(r)oq 

The magnetic transition moment varies under a translation 
of the origin of the Cartesian coordinate system by some vector 
A according to 

(0 |E (r, + A) X V,|q> = <0|£(r, X V,-)|q> 
i i 

+ A X ( O l E V1-Iq) 

It follows that the component of the magnetic moment along 
the direction of (0|2,V, |q> is independent of A. This direction 
defines what Moffitt proposed as a "partial optic axis" for the 
transition 0 —- q.42 

Let I00 = (0ISKr1XV1)Iq)5VOq-(O 
<0|S,r,-|q>. Then F 0 q = l0q-(VnJlV, 
of l0q along V0q, and R^ 0q = 
In atomic units, we have 

2,V l|q>,andr0q = 
/qq/1 voq ) is the component 

I1Oq-I Oq is independent of origin. 

/ ? W 0 a = Oq - KOq 
'Oq 

Voq 
'Oq • " L°_g_ 

'Oq 

(,0,.V,,)^-Vo.) ^ H " ' - ' 
(V0q • V0 q ) 

• AEfW-Oq 

or 
/?M0q = R ( V ) 0 q ( ^ V / V ) O q ) 

It is seen that R ^1Oq = R(r)oq if roq and V0q are parallel. The 
origin-dependent part of R^oq has been shown previously to 
be less than or equal (in cgs units) to 

AR^ Oq 
3e2h 
Am c 

AI |/(^)0qtan/?oq| 

and lAl is the where /3oq is the angle between r0q and V-
magnitude of the translation vector.13 
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Early in this century, Pascal found that, in general, the 
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We hereafter refer to DSE only, and call it the diamagnetic 
susceptibility of a conjugated system for convenience's sake. 

Graph Theoretical Formulation of the London Theory 
In the London theory for aromatic hydrocarbons,6,7 the 

effect of a uniform, external magnetic field, with a component 
perpendicular to the ring plane, is to perturb the original 
"field-free" Huckel secular determinant by modifying all the 
off-diagonal matrix elements, H,j, in the original AO basis, 
by a complex factor 

O)1J = CXpUd1JH) (1) 

where 

he 

Here, H is the magnitude of the component of the external 
magnetic field perpendicular to the ring plane, e, h, and c are 
the standard constants with these symbols, and ^ is the signed 
(algebraic) area of the triangle formed by an arbitrary (but 
subsequently fixed) origin and atoms i-j in the conjugated 
system. Since Sy is a signed area, Sy = —sji, and therefore coy 
= Wji*. 

Here, we consider the eigenvalue problem of conjugated 
hydrocarbons. To a first approximation, one may take Hy to 
have a common value /3 for all C-C bonds. All the diagonal 
matrix elements, Hu, may be set equal to a. The Huckel sec­
ular equation can then be reduced to 

|wy-A-8„ |=0 (3) 

where A' is a dimensionless eigenvalue. It is linearly related to 
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